Chess Tournament I

Medium
Combinatorics Counting Principle

Problem

A chess tournament has 128 players, each with a distinct rating. Assume that the player with the higher rating always wins against a lower rated opponent and that the winner proceeds to the subsequent round. What is the probability that the highest rated and second-highest rated players will meet in the final ?


Original Problem Link: https://www.quantguide.io/questions/chess-tournament-i

Solution

Before proceeding to the question, let's think of the following situation -
Initially, 128 people are divided into 2 groups of 64 people each.
In every round, each group will play within itself (say each guy plays with the guy beside him). How will a group play within itself?

Consider group A with .
Let's say that adjacent people play chess with each other. Then the games will be:

From each game, one person (with the higher skill) will win .
Thus, after the first round, we will have 32 players remaining .

This process will go on until only one guy remains in each group , and that person will play with the person from another group to decide the final winner .

Now, try to convince yourself that this model is exactly the same as the situation given in the question.
How? 🤔

  • If the initial distribution of people among Group A and B , and the arrangement of people within both groups are all random , it will consider all possible plays between every player.
  • Each unique initial arrangement corresponds to a unique gameplay .
  • Since by randomizing the initial group allotment , all possible distributions of people in Group A and B are considered, it means all possible gameplays are also considered. This exactly models the given problem.

Key Observation

In our model of the gameplay, the highest-rated and second-highest-rated player will face off against each other only when they are in different groups initially .

This problem is now much simpler, effectively reducing it to:

In how many ways can I arrange 128 people in 2 groups (their position within the group is unique), such that 2 particular people are always in different groups?


Solving the Sub-Problem

First, let's allot the highest player and second-highest player to each group.
There are 2 ways of doing this:

  • Highest -> Group A, Second-Highest -> Group B
  • Highest -> Group B, Second-Highest -> Group A

Now, once this is done:

  • Out of the remaining 126 people , select 63 people for Group A.
  • The remaining 63 go to Group B.
  • Now, we must arrange the people within each group itself , thus another (one for each group).

Our final expression for the favorable cases becomes:

where is the event described above.


Computing the Probability

To find the probability of this arrangement, we must compute the total number of possible arrangements .
Clearly, this is How 🤔 ?

  • Assume a partition after (representing the end of Group A and the beginning of Group B) exists, to seperate groups A and B.
  • We can linearly arrange all 128 people in ways. Thus each combination will represent a unique gameplay.

Thus,

The required probability is:

Substituting values:

Expanding the combination formula:

Thus:

Expanding as :

Canceling :

Using:

Simplifying:


Final Answer

Thus, the probability that the highest-rated and second-highest-rated players meet in the final is .